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SUBGRID MODELING OF FLOW PROCESSES IN AN ANISOTROPIC FRACTAL MEDIUM

O. N. Soboleva! and E. P. Kurochkina? UDC 532.536

Equations are derived for the effective coefficients of random conductivity fields in the stationary
problem of flow in an anisotropic medium. For the fields, lognormal statistics is assumed. The prob-
lem is solved using the subgrid modeling method. The results of theoretical calculations are compared
with the results of direct three-dimensional numerical modeling. The results of numerical and theo-
retical calculations are shown to be in good agreement with each other.
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Introduction. Due to sedimentation under calm conditions (in the absence of anthropogenic factors or
natural catastrophes), natural inhomogeneous media take the properties of multilayered systems. It is therefore
of interest to study problems of geoelectricity and filtration in anisotropic media. As a rule, the solution of such
problems is based on an analytical or numerical solution of equations with piecewise constant coefficients for media
with various types of regular inhomogeneities — layers. However, for media with substantial inhomogeneity, solution
of the problem requires large computational efforts and is difficult to use for analysis and interpretation of results.
Usually small-scale field anomalies can be taken into account by means of effective coefficients using statistical
approaches [1, 2]. If the dimensions of the region in which the problem is solved are larger than the inhomogeneity
scale, the effective coeflicients in the region depend weakly on the formulation of the boundary problem. In this
case, to determine the effective coeflicients, it is necessary to take into account higher-order terms in perturbation
theory [1]. This problem is solved using the field renormalization group approach [3, 4] and the subgrid modeling
method [5]. In the present work, the subgrid modeling method is used to obtain equations for the effective coefficients
in the problem of flow in an anisotropic medium in which the conductivity at a point is isotropic and the correlation
function of the field is anisotropic. As a rule, exactly this type of anisotropy is inherent in real layers in sedimentary
rock.

Formulation of the Problem. Let a local flow v and a field h be linked by the system of relations

v(x) = o(x)h(x), divo(x) =0, h(x) = -VU(x). (1)
In the problem of flow of a constant electric current in an inhomogeneous medium, the vector v represents the electric
current density vector, the field h defined by the potential U (x) is the electric field, and the local conductivity o(x) is
the random field of the specific electrical conductivity of the medium. In the problem of filtration of a single-phase
liquid in an inhomogeneous medium at small Reynolds numbers, the vector v represents the filtration velocity
vector, vector h represents the field defined by the pressure gradient [h(x) = —Vp(x)]; the local conductivity o(x),
equal to the ratio of the conductivity to viscosity, is the random field dependent on coordinates. The pressure and
velocity are related by the Darcy equation. We assume that on the boundary I" of the region V' in which Egs. (1) are
solved, some boundary conditions are specified. The dimensions of the region V' are larger than the inhomogeneity
scale; therefore, the formulas for the effective coefficients in the region depend weakly on the type of boundary
problem.
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The field o(x) is modeled using the approach described in detail in [5]. The field of the physical parameter
o(x) (conductivity, porosity, electrical conductivity, etc.) is known if it was measured with a certain step lp. The
random function of the spatial coordinates o(x) is treated as the limit of the parameter oy, (x). For lo — 0, we
have oy, (x) — o(x). Similarly to [6, 7], a dimensionless field ¢ equal to the ratio of the conductivities smoothed on
two different scales I and I’ was considered in [5]. We denote by o(x); the parameter o;, () which is smoothed on

the scale I. Then, (x,l,I') = o(x)y /o(x), (I' <1). For I’ — [, we have the field p(z,l") = (O (z,l',1'y)/0y) v
y=
which defines all statistical properties of the medium. As a result, we have the equation
dlno(x),
oo =l ) 2
In fact, small-scale fluctuations of the field ¢ can be observed only in a certain finite range of scales [p < | < L.
The solution of Eq. (2) has the form

L
o1 () = o exp ( /(p(cc,ll) ‘Zl) ()

lo
where o is a constant.

According to the theorem of sums of independent random fields [8], if a variance ¢(x,1) at a given point is
finite, then, for large values of L/ly, the integral in (3) tends to a value that corresponds to a field with a normal
probability distribution. If the variance of the field ¢(x,() is infinite and if a nondegenerate (not concentrated at
one point) limiting distribution of the sum of random variables exists, this distribution is stable. In the present
work, it is assumed that the field ¢(x,1) has a normal distribution and a homogeneous correlation function:

(p(@,1) oy, 1) — (p(z, D))oy, 1) = 2(x —y,1,I') 6(Inl — Inl') (4)
(the angular brackets denote statistical averaging). It is assumed that the fluctuations of the field ¢ in different scales
do not correlate. This assumption, which is usual for scaling models, corresponds to the fact that the statistical
dependence becomes insignificant if the fluctuation scales of the parameters are different in value. If the medium is
self-similar, then, for any positive value of K, the following condition holds:

O(x —y,l) = d(Kx — Ky, Kl).
According to the conservative description of the cascade [7], any [ should satisfy the equality {(o;(x)) = 0. For fields
such as the porosity field, this condition follows from their physical meaning and it is also valid for conductivity

fields and electrical conductivity if one assumes the ergodic hypothesis, i.e., the possibility of smoothing over large
volumes equivalent to statistical averaging. Equation (3) for the conservative cascade implies that

L
(e (= [ote) ) =1. (5)

lo
In the special case of uncorrelated fluctuations of the field ¢ of different scales (4), equality (5) is satisfied provided
that

Do (1) = 2{e(1)), (6)
where ®q(1) = ®(0,1).

Subgrid Modeling. The conductivity function o(x) = oy, (x) can be divided into two components accord-
ing to the scale . The large-scale component o(x,!) is obtained by statistical averaging over all p(x, 1) for [; <,
and the small-scale component is equal to o’(x) = o(x) — o(x,1). Thus,

1

L
dl
o(x,l) = og exp /(p (x, ll exp /(p (z,lh) 1
1

lo
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The large-scale (supergrid) component U, [) represents the statistical mean of the solutions of system (1) in
which the large-scale component o(«,1) is fixed and the small-scale component ¢’ is random, i.e., U(x,l) = (U(x)).
The subgrid component is equal to U’ = U(x) — U (x,1). Substituting the expressions for U(x) and o(x) into system
(1) and averaging over the small-scale component, we obtain

Vio(z, 1)VU (,1) + (o (x)VU' (2))] = 0. 8)

In Eq. (8), the unknown second term cannot be rejected without tentative estimation since the correlation between
the conductivity and potential gradient can be significant [1]. The choice of the form of the second term in (8)
defines the subgrid model. The value of this term is estimated using perturbation theory. Let the initial value of
the scale [ be close to the smallest scale ly. Taking into account (8) and ignoring second-order terms as was done
in [5], from system (1) we obtain the subgrid equation

AU (z) = — Vo' (x)VU (z,1). (9)

1
o(x,l)
Because an insignificant change in the scale o(x,l) causes significant fluctuations of the field (which is
characteristic of fractal fields), it can be assumed that the field and its derivatives change more slowly than the
quantity ¢’ (x) and its derivatives. The same assumptions is made for the field U(x,l). According to the subgrid
modeling method, the quantities o(x,l) and U(x,l) on the right side of Eqs. (9) are considered known. Because
the values of U'(z) on the boundary are equal to zero, the solution of Eq. (9) has the form

U (x) = 4m§w’ ) ( V/ i Vo' (') da') VU @, 1). (10)

where r = |z — &'[; V' denotes differentiation with respect to the variable «’. The quantity VU (x, ) is taken out of
the integral, according to the assumptions adopted above. Using (10), the subgrid term in Eq. (8) is expressed as

GV =, () [V Ve a9
14
1 NN

Here V; = 0/0x;; the summation is performed from 1 to 3 over repeated indices. For a lognormal distribution
of the conductivity probabilities, formula (7) for the statistical moments implies that, for small dl = | — Iy, the
following equalities are valid:

o(xz,l) =o(x) (1 — () (jl + ; Dy(1) C;l), (12)
1
(0'(@)o’ (@) = ole, 0 exp (= [ (ol ) + 9@ )~ 200) + @o(1) ) = 1) ol PR - 20 | (13)
lo
Substitution of (13) into (11) yields
(o' (z)V;U'(z)) = nijo(x,1) V;U(x,1) a;l, Nij = —417T /V; i Vi®(x —2',1)dx’. (14)
1%

The integral over the region V in formula (14) can be replaced by the integral with infinite limits because
the integrand correlation function is small if @ — a’| > L (L < Lo, where Ly is the smallest size of the region V'
and L is the largest inhomogeneity scale). With such a replacement, the error is significant only in a narrow
region (whose size is equal to the correlation radius) near the boundary. To calculate integral (14), it is necessary
to know the correlation function ®. Determining the form of the correlation function from experimental data or
natural measurements is difficult (see, for example, [9, 10]). To determine the degree of the effect of the form
of the correlation function on the effective coefficients proposed in the present work, we compare two correlation
functions and the frequently used rectangular approximation of correlation functions. The conducting medium will
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be considered stratified so that the conductivity along the coordinates z; and , x2 has identical inhomogeneity
scales. Let, along the 21 and xo axes, the scale be equal to I3 = ayl, and along the x5 axis, to lo = asl (o and s
are positive constants). Identical scales on the two axes are considered in order to avoid lengthy calculations and
numerical calculations of elliptic integrals that arise from integration of correlation functions for three-dimensional
structures. Let us consider the correlation function

a? %
Py (x,1) = Oo(1) exp ( - 121 () — 21)? + (2 — 22)?] — 122 (afy — 333)2). (15)
Fori=j (i=1,2), a1 < ag, and ¢? = (a3 — a?)/a3, the integral in (14) is equal to
A +1 (1 arcta 1 )
= I n — .
i 2¢2 \¢ ‘Tt

For i # j, the integral is equal to zero since, in this case, the integrand function 1 is odd. For i = j = 3, the integral
is equal to

A +1 1
N2 = 5 (1 — arctan c).
c c

Fori=j (i=1,2), a1 > as, and ¢? = (a? — a3)/a?, the integral in (14) is equal to

1—02(11 (1—|—c) 1 )
= n —
i 2¢2 \2c 1—c 1—c2/)’

and for ¢ = j = 3, the integral in (14) is equal to

_1—c2(11 (1—|—c) 1)
2= 2¢ " \1-¢ '

Using the obtained expressions for the integrals and formula (12) and neglecting terms of the second order
in dl, we obtain the following estimate for the second term in the supergrid equation:

(o' @) Vi @) =~ (0~ @omi — () (@) VU@ D), =12

2
16)
P dl (
(0'(@) VaU'(@)) = () = Pomz = (2) | (01(@) VaU (@.0).
Substituting (16) into (8) and letting dl to zero, we obtain the following equations for the effective local flow:
dinol, @ dino?, @
dlnl 2 — Pom1 — (¢), dinl 2 — Qomi2 — (). (17)

For ay — 1, the result corresponds to the isotropic case: 117 = m12 = 0.333. In the estimation, the scale
invariance property can be ignored. This implies that the coefficients a; and a5 can also be scale functions. If the
medium is scale invariant, the solution of Egs. (17) has the form

ag = oor(I/L)*/2m o=@ g = gop (1/L)*e/2 T Peme (9, (18)

Let us consider the second anisotropic correlation function of conductivity [10]:

(0% (0%
@ (e, 1) = Doexp (- @ =202 + (@~ w2)? — * g — as). (19)

For the function (19), the integral in (14) is equal to

721 = \/62_1(2111 (c+\/02_1)+1nc+1)_ \/62_1(1_\/62_1)’

4¢3 c—1 2¢2

21 1 1 21
7722:—\/6 (2111 (c+\/02—1)—|—1nc+ )—|— Ve .
2c3 c—1 c?
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TABLE 1

Parameters 7;; versus Ratio a1 /ao

a1/az n11/M12 121 /122 131/7M32

0.01 0.008/0.985  0.022/0.957  0.005/0.991
0.05 0.037/0.926  0.070/0.861  0.023/0.955
0.25 0.148/0.704  0.179/0.642  0.110/0.781
0.50 0.236/0.527  0.244/0.511  0.205/0.590
1.00 0.333/0.333  0.312/0.377  0.333/0.333
5.00 0.472/0.056  0.432/0.136  0.488/0.025
10.00 0.490/0.020  0.461/0.078  0.497/0.006
20.00 0.497/0.007  0.479/0.043  0.499/0.002

Here ¢? = (a2 + a3)/a3. As as — i, we have 791 = 0.312 and 792 = 0.377, i.e., the anisotropy is preserved.
Because it is difficult to determine the form of the correlation function from experimental data, in some cases, the
correlation function [1] is approximated as

(I)(), |xl|§l/al, izl,...,3,
®s(x,1) = 20
3(m ) { 0, |xl| > l/al ( )

The function 3 may not always be used to approximate the correlation function because, for some frequency values,
its spectral density takes negative values. The function ®3(x,[) is not isotropic because if all coefficients «; are

identical, the parallelepiped becomes a cube. For the approximation (20), we calculate the integral in (14):

oy 2 a%

2
731 = arctan , 732 =  arctan .
T V203 + of T a1y/203 + o}

For a; = a9, we have 131 = n32 = 0.333. Thus, we obtain the result which corresponds to the isotropic case,
although the employed function is anisotropic. The values of the parameters 7;; calculated as functions of the ratio
aq /ag, indicate that the mean local flow depends insignificantly on the form of the correlation function (Table 1).
From Table 1, it follows that the results of calculations using all functions ®; are close except in the region in which
the values of ;; are small. However, for this region, the corrections in estimating the mean local flow are negligibly
small. Thus, the effective coefficients depend mainly on the scale of correlations on various coordinate axes.

Let us determine the effective coefficients for estimating the tensor of the second statistical one-point moments
of the field h. At the point x, the tensor components of the second statistical moment are equal to

(hn(@)hj (@) = Vo U(@,1) VU (2,1) + (Vo' (2) VU’ (2)). (21)
Let us estimate the second term in (21). We denote 1 = |& — &’| and ro = | — &”|. Using formula (9), we obtain

the correlation tensor components for VU':

(VU () VU (2)) = IV, U(2,1) Vi U(2,1) di

l Y
I_ 1 vl ]‘ vl/ ]‘ vl vl/@ " ! l d I/d !
= l6n2 nop Vi g, Vm Vi (" — ' 1) dx" dx'.

Calculating the integral in (22) for n = j using the correlation function (15), for the second statistical moment of
the field h(x) we obtain

(22)

hl ($)2> hl (iIZ,l)2 dl hl(m,l)2
(ho()2) | = | ha(z,0)? | +Po(l) ; Ay | ha(x,0)? |, (23)
(hs(x)?) ha(,1)? hs(,1)?
where the matrix A; for a; < ag, ¢? = (a3 — a)/a?, and b = arctan c is equal to
'3(02—3)(02+1)b 3(c? +3) (2 =3)(+1), *+3 (c2+3)(c2+1)b_ 3(1+¢2) 7
16¢5 16¢4 16¢5 16¢4 4¢d 4ct
(2=3)(c2+1), A+3  3(*=3)(*+1), 3(c*+3) (A+3)(2+1), 3(1+c?)

Ay = b b b—
! 16¢5 t 16e 16¢5 T et 4¢P At

(@+3)(@+1),  31+e) (3@ +1), 31+ 3+, (12 +3)
L 4cd 4ct 4cd 4ct 2c5 2c4 J
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and for oy > an, ¢ = (a? — a2)/a?, and b= In((1 +¢)/(1 — ¢)), we have

'_3(1—02)(62+3) B 3(c? - 3) _(1—62)(02+3) B 23 (1—02)(3—62)b_ 3(1—¢c?) 7
32¢5 16¢4 32¢5 16¢4 8cd 4ct
A = _(1—02)(C2+3) B 2 -3 _3(1—02)(C2+3) B 3(c? —3) (1—02)(3—62)b_ 3(1—¢?)
32¢5 16¢* 32¢5 16¢4 8cd 4ct
(1-cH)(3—c?) b 3(1 —¢?) (1-cH)(3—c?) b 3(1 —¢?) _3(1—02)2 b (1—c*)(2¢% -3)
L 8cP 4ct 8cP 4ct 4cP 2c* .

The matrix A; is symmetric; therefore, it has real eigenvalues \; and independent eigenvectors. In Eq. (23),
we make the change of variables u;(x,l) = Th?(z,l) (T is a transformation that reduces the matrix A; to diagonal
form). As in the estimation of the mean local flow, taking into account relation (12), we obtain the equation

dlné}
dInl
Hence, for a scale-invariant medium, the vector components w;(x,!) are calculated by the formula

ui(z) = (I/L)Po P20y, (z,1).
Applying the inverse transformation u to the vector 7~!, we obtain the estimate for (h(x)?).

Let us estimate the quantity (h,(x)h;(x)) using the correlation function @4, if n # j. For a1 < a9, the
integral in (22) is equal to

=05+ \; Do — 2<g0>

2 2 _ 2 1 2 1 2 1 2
N2 = 08;3 + (c 38)0(50 + )arctan c, M1z = —3(04;_ )—i— (C + 4)C(5i’>—|—c )arctan c,
and for a; > ao,
3—c2 1—e*) (2 +3 1+c¢ 3—cA)(1—¢? 1+¢ 3(1 —¢?
I _ )(5 )ln( ) s = ¢ )(5 )ln( )_ ( . )
16¢ 32¢ 1—c¢ 8¢ 1—c¢ 4c

(mas = m13). For n # j, the effective coefficients for the tensor elements of the second statistical moment of the
vector h(x) are given by
dln &} dIn g}
dlnl dlnl

For a scale-invariant medium, the estimates of the tensor elements of the second statistical moment of the vector
h(x) are power-law functions of the scale

(hy(@)ha(x)) ~ (1/L) Ptz hy (2 hy(a, 1),

= o+ m12P0 — 2(p), = Do + 111300 — 2(p).

(ha(@)hs()) = (ha(@)hs(@)) ~ (I/L) P30~ 2 hy(a, D hs (@, 1)

If the correlation function ®(x — «’,1) is approximated by function (20), then in Eq. (23) for the tensor
components of the second statistical moment of the vector h for n = j, the matrix is equal to

[ 3¢ —2 2 1 2 -1 |
2me2\/2¢2 -1 T 2mv/2¢2 — 1 mc2v/2c? — 1
1 3c2 -2 2 2 -1
A2 - — +
2mv/2¢2 — 1 21?22 -1 ™ T2V/2c2 — 1
-1 -1 2(c? —1) 2b
me2y/2¢2 — 1 mc2\/2¢2 — 1 Tc2/22 -1 7w |
Here b = arctan (1/v/2c2 — 1) and ¢® = (a? + a3)/a?. For a; = s, the matrix elements on the main diagonal are
3
equal to 0.15, and the off-diagonal elements are equal to 9.2- 1072, For the tensor invariant Z(hi(m)2>, we obtain
i=1
the same formula as for the isotropic field:
3 PN
hi(@)?) ~ (14 Do o) ) > hale,1)?
> (@)’ 0y) D tad
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TABLE 2

Elements of Matrices A1, and A2 versus Ratio a1 /a2

a1/az a11/a1 a12/a12 a13/a13 a33/a33
0.01 0.003/0.001 0.001/0.001  0.004/0.002  0.977/0.986
0.05 0.015/0.006  0.005/0.006  0.017/0.011 0.891/0.933
0.25 0.069/0.029  0.023/0.027  0.056/0.052  0.592/0.676
0.50 0.125/0.067  0.042/0.053  0.070/0.084  0.387/0.421
1.00 0.200/0.150  0,066/0.092  0.066/0.092  0.200/0.150
5.00 0.340/0.323  0.113/0.153  0.019/0.012  0.017/0.001

10.00 0.362/0.336  0.121/0.157  0,008/0.003 0.005/0

20.00 0.370/0.340  0.123/0.159  0.003/0.001 0.001/0

Although the tensor invariant did not change, the diagonal elements of the matrix A, decreased by a factor of
approximately 1.3 due to an increase in the off-diagonal elements. The weak anisotropy of the correlation function
®3 leads to some smoothing of the variance of the vector components h. For i # j, for the tensor elements we have

1 dl
(b (@)ha(@)) ~ (1+ oz 1 | (@ Dha(@, ),
((@)hs () ~ (1 + m;\/;ci n Cgl)hl(w,l)hg(w,l).

Hence,
dln&l1 ( 1 dln&l2 -1
—(1+ )cb — 2y, :(1+ )cb — 2y,
dinl omv/ace - 1) 20 729 dlnl arery/ace 1) %0 T3P

Table 2 gives the elements of the matrices Ay (a11,a12, a13,ass) and As(ay1, dia, a13, dss) versus the ratio ay/as.
Let us estimate the correlation tensor of the local flow v. The one-point second statistical moment of the
local flow is equal to

(i(x)vg(x)) = o(x,1)>V,;U (2, ) VU (2, 1) + (2, )2 (V.U () VU’ (x))
+ (o (2)*)V U (x,1) ViU (1) 4 2(0’ () Ve U’ (x))v;i (2, 1) + 2V U(x, 1) (o’ (2)V;U' (x))
+ (o’ (2)*V;U' (2) ViU’ () + 20(x, ) (o' () Vi U’ (2)V;U' (x))

+ (o' (x)? ViU (2)) VU (2, 1) + (o’ (2)* VU (2)) V.U (z,1). (24)

An estimate of the second term in (24) follows from the above estimate of the second moment h, an estimate of
the third term follows from formulas (12) and (13), and an estimate of the fourth and fifth terms can be obtained
by calculating the integral in (14). The other terms are equal to zero up to second-order terms in dl. Using (13),
(16), (22), and (24), for the tensor components for ¢ # j and the correlation function (15), we obtain

(vi(x)?) v (x, 1) v (x, 1)
<1}2(.’B)2> = ’Uz(.’ll,l)z —‘rq)o(l) I A3 Ug(w,l)z
(v3(x)?) v3(x,1)? v3(x,1)?
For a; < @, the matrix As is equal to
I _(2962+9)(c2+1)b+ w (02—3)(C2+1)b +3 (02—|—3)(C2—|—1)b_ 3(1+¢?) T
16¢5 164 16¢5 164 4cd 4ct
Ay = (=3)(c*+1),  A2+3 _(29c2+9)(02+1)b+ w (02—3)(c2+1)b_ 3(1+¢?)
16¢5 16c4 16¢5 16¢c4 4¢cd 4ct
(02—3)(02+1)b_ 3(1+¢?) (02—3)(02+1)b_ 3(1+¢?) (c2+1)(502—3)b_ wy
L 4cd 4ct 4cd 4ct 2¢5 2¢t

Here b = arctan ¢, w = 16¢* 4 35¢2 + 9, and wy = 4¢* 4 3¢ — 3.
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For oy > as,

r (2902—9)(1—02)b+ w _(02+3)(1—c2)b_02—3 _(c2—3)(1—c2)b_3(1—c2)'
32¢5 16¢* 32¢5 16¢* 8cP 4ct
Ay = _(c2+3)(1—c2)b_c2—3 (2902—9)(1—02)b+ w _(02—3)(1—02)b_3(1—02)
32¢5 16¢* 32¢5 16¢* 8cP 4ct
_(02—3)(1—02)b_3(1—02) _(02—3)(1—02)b_3(1—02) _(1—02)(502+3)b_ w
L 8¢S 4ct 8¢S 4ct 4¢P 2¢t A

Here b=1In((1+¢)/(1 —¢)), w=16¢* — 35¢* + 9, and wy = 4¢* — 3¢ — 3.

Next, we use the same approach as for the estimation of the second statistical moment of the vector h. The
matrix As is reduced to diagonal form. For a scale-invariant medium, the effective coefficient for linear combinations
Um = tmrvk(x)? are power-law functions of the scale (t,,; are the elements of the matrix formed of the eigenvectors
of the matrix As). In this case, the exponents depend on the eigenvalues \,, of the matrices As. Applying the
inverse linear transformation to the vectors u,,, we obtain an estimate for (vi(x)?). From (13), (16), (22), and (24),
it follows that, for i # j, the correlation tensor components calculated using the correlation function (15) are equal
to

(o1 (@)a(@)) = (14 oz + 1~ 4ma) § un (@, us(e, 1),

(wn(@)os(@)) = (14 @o(mas +1—4na) ) Jon (@, Dos(a, )

For dl — 0, from (25) it follows that the effective coefficients satisfy the equations

dln 6’1 2 — @
(1 Oll) = 2% + 1120 — 4111 Po 2< >’
dln 6'2 2 —
d(lnoll) = 2®¢ + N113Po + 4112Po — 2(¢).

Numerical Modeling. To verify the above formulas, as in the isotropic case, we solve the problem for a
unit cube with a unit jump of the potential for g = 1. The calculations are performed for two types of boundary
conditions:

1. On the cube faces y = 0 and y = Lo, the constant potential is specified: U(z,y, 2)|y=0 = U1 and
U(z,y,2)|y=1, = Uz (U1 > Uz). The potential on the other faces of the cube is given as a linear function of y:
U =U; + (Uz —Us)y/Lp. In this case, the largest component of the local flow is directed along the y axis, and the
mean values of the components v,, and v, are equal to zero.

2. On the cube faces z = 0 and z = Ly, a constant potential is specified, and on the other faces, the potential
is given as linear function of z: U = Uy + (Us — Us)z/Lg. The local-flow component along the z axes is the largest,
and the mean values of the components v, and v, are equal to zero.

The calculations are performed using dimensionless variables and a 256 x 256 x 256 grid on the spatial
variables. The conductivity field is modeled by formula (3), which is replaced by the finite-difference analog

logy L 0
- X e(=m)AT

o(x), = exp ( —1In2 / o(x, ) dT) SR . (26)

log, 1

Here 7 = logy ! and 7, = logy I; (the logarithm to base 2 is introduced for convenience); the scale step is AT = 1.
In the calculations, three scales were used: 71 = —6, 79 = —5, and 73 = —4. The first two and the last three terms
in the sum in (26) are equal to zero. Numerical modeling is performed using the algorithm by rows and columns
described in [11]. A scale-invariant correlation function of a normal random field is used:

i of (z1 —y1)? + af (w2 — y2)* + a3(xs —y3)2)

* 0
Pi(x—y,15) = In 9 P ( - 927, (27)

Two models of the medium are considered: 1) the inhomogeneity scales are assumed to be large on the x
and y axes and small on the z axis; a1 /as = 0.25; 2) the inhomogeneity scales are assumed to be small on the x
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Fig. 1. Conductivity field o [numerical modeling by formula (26)] for three scales in the midsection
(z =0.5, P9 = 0.3, {p) = 0.15, and a1 /a2 = 0.25).

and y axes and large on the z axis; a1 /as = 4. All results were obtained for values of the parameters ®; = 0.3 and
(p) = 0.15, i.e., the conservative cascade (6) is considered. Figure 1 gives the results of numerical modeling of an
anisotropic field by formula (26) (the first model of the medium).

The numerically calculated mean local flow v in the range of scales (I, L) is compared with the mean flow
obtained by theoretical formulas for the same range of scales; in this case, | — [y. The effective conductivity should
give the true mean local flow in the range (L,[). Since the conductivity (26) is scale-invariant, thee mean local
flows are power-law functions of the scale. In fact, the exponents in formula (18) are checked. The dependences
of the logarithms of the mean values of the local-flow components on the truncation scale are given to check the
accuracy of the effective coefficients (18). Numerical calculations showed that, to replace statistical averaging by
averaging over the space for a1 /as = 0.25 and o1 /as = 4, the size of the cube is insufficiently large (in both cases,
the maximum scale is 1/4); therefore, additional averaging over the Gibbs ensemble was used. The generation of
the coefficient and the solution of the problem was performed 80 times with the subsequent averaging over space.
For the chosen parameters of the problem, this was sufficient. System (1) was solved numerically using an iterative
method. In Figs. 2-7, the abscissas show the number of terms k in the sum in the exponent in formulas (26) (i.e.,
the number of scales used for modeling o). Figure 2-7 give the results for the isotropic case to compare the mean
local flows and the second statistical moments in the isotropic and anisotropic cases.

Figure 2 and 3 give curves of the logarithm of the mean values of the local-flow components versus the
number of scales for the first and the second models of the medium. A decrease in the local flow with increasing
number of scales in the medium is explained by an increase in the contact surface area between the regions with
different conductivities, resulting in an increase in the flow resistance. The variance of the local flow and the field h
increase for the same reason. For both models with different flow directions, the results of numerical and theoretical
calculations are in good agreement. For the flow versions corresponding to Fig. 2a and Fig. 3b, the error of the
estimated mean local flow for three scales does not exceed 1%, and for the flow versions corresponding to Fig. 3a
and Fig. 2b, it does not exceed 8.8 and 4.2% respectively.

Figures 4 and 5 give curves of the correlation tensor of the field h versus the number of scales taken into
account in the first and second models of the medium. The quantities (hy(x)?) — (he(x))?, (hy(x)?) — (hy(x))?,
and (h,(x)?) — (h.(z))? are denoted by D,, D,, and D,, respectively. Figure 4a shows only two components D,,
and D,,. In this case, D, ~ D,. Figure 5 shows the components D, and D, (D, = D, and Fig. 5b shows D, ~ D,
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Fig. 2. Dependences of log, (vy) on the number of scales (the main flow is directed along the y
axis) for a1/a2 = 0.25 (a) and 4 (b); the curves and points show the theoretical and numerical
calculations, respectively, for isotropic medium (1) and anisotropic medium (2).
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Fig. 3. Dependences of log,(v.) versus the number of scales (the main flow is directed along the z
axis) for a1 /a2 = 0.25 (a) and 4 (b) (notation the same as in Fig. 2).
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Fig. 4. Components of the variance of the field h versus number of scales (the main flow is directed
along the y axis) for a1 /a2 = 0.25 (a) and 4 (b); curves and points show the theoretical estimations
and numerical calculations, respectively; curves and points 1 and 2 refer to the components D, and
D, of the isotropic medium, respectively; curves and points 3, 4, and 5 refer to the components D,
Dy, and D, of the anisotropic medium, respectively.
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Fig. 5. Components of the variance of the field h versus number of scales (the main flow is directed
along the z axis) for ay /a2 = 0.25 (a) and 4 (b); curves and points show the theoretical estimations
and numerical calculations, respectively; curves and points 1 and 2 refer to the components D, and
D, of the isotropic medium, respectively, and curves and points 3 and 4 refer to the components
D, and D, of the anisotropic medium, respectively.

for anisotropic media). The estimates of the variance h are less accurate than the estimates of the mean values of
the local flow in both the isotropic and anisotropic cases.

Figures 6 and 7 give curves of the variance of the local-flow field versus the number of scales taken into
account for the first and second models of the medium. The quantities (vy(z)?) — (v, (2))?, (vy(2)?) — (vy(x))?,
and (v (x)?) — (v.(x))* are denoted by D, D, and D, respectively. Figure 6a shows only two components D,
and Dj. In this case, D’ ~ Dj. Figure 7 gives the components D) and D’ (D; = D).

Conclusions. Equations were derived for the effective coefficients for the mean flow potential, mean local
flow, and its variance, and the variance of the potential gradient in the stationary problem of flow in an anisotropic
multifractal medium, along with power laws for the averaged components of the local flow in a self- similar medium.
Theoretical results were compared with the results obtained by direct numerical modeling. From the results of the

numerical experiment, it follows that the estimate of the mean local flow is fairly exact even for large values of
—4

the variance of the field. In the numerical experiments, the variance of the field Z o(x, 7;)AT is equal to 0.9.
i=—6
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and numerical calculations; curves and points 1 and 2 refer to the components D, and D; of the
isotropic medium, respectively; curves and points 3, 4, and 5 refer to the components D;,, D;, and
D’ of the anisotropic medium, respectively.
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Fig. 7. Variance components of the field v versus the number of scales (the main flow is directed
along the z axis) for a1 /a2 = 0.25 (a) and 4 (b): curves and points show the theoretical estimations
and numerical calculations, respectively; curves and points 1 and 2 refer to the components D’ and
D’ of the isotropic medium, respectively; curves and points 3 and 4 refer to the components D,
and D’ of the anisotropic medium, respectively.

According to the experimental data given in [2, 9], for the hydraulic conductivity of sedimentary rock, the values
of this variance are in the range of 0.20-0.45. For the estimated mean local flow (the plane—parallel flow is normal
to a thin-layered bed (see Fig. 3a), the largest error is 8.8%. The estimate of the second statistical moments are
less accurate. The estimated variances h have the largest error — 60% (see Fig. 5a). The error of the estimated
variance of the local flow is 50% (see Fig. 7a). In the remaining cases, the error of the estimates is approximately
20%.

The Kolmogorov similarity hypothesis does not assume logarithmic normality and uncorrelatedness for the
logarithm of the scale. Therefore, another obvious possibility of extending the above approach is to study stable
distributions [12, 13] and to consider the case of conformal symmetry of conductivity. The procedure proposed in
the present work allows the estimation of the effect of small-scale pulsations on the large-scale component of various
fields, which is especially important if the inhomogeneity scales are in a wide range.
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One of the possible applications of the results of this study is the interpretation of electromagnetic logging
oil and gas fields when the characteristic linear size of a measuring setup, for example separation or wavelength

varies during measurements.
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